Weyl Curvature, Einstein Metrics, and Seiberg-Witten Theory

نویسنده

  • Claude LeBrun
چکیده

We show that solutions of the Seiberg-Witten equations lead to nontrivial estimates for the L-norm of the Weyl curvature of a smooth compact 4-manifold. These estimates are then used to derive new obstructions to the existence of Einstein metrics on smooth compact 4-manifolds with a non-zero Seiberg-Witten invariant. These results considerably refine those previously obtained [21] by using scalar-curvature estimates alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WEYL CURVATURE , EINSTEIN METRICS , AND SEIBERG - WITTEN THEORY Claude LeBrun

We show that solutions of the Seiberg-Witten equations lead to nontrivial estimates for the L2-norm of the Weyl curvature of a compact Riemannian 4-manifold. These estimates are then used to derive new obstructions to the existence of Einstein metrics on smooth compact 4-manifolds with a non-zero Seiberg-Witten invariant. These results considerably refine those previously obtained [21] by using...

متن کامل

0 Ricci Curvature , Minimal Volumes , and Seiberg - Witten Theory Claude LeBrun

We derive new, sharp lower bounds for certain curvature functionals on the space of Riemannian metrics of a smooth compact 4manifold with a non-trivial Seiberg-Witten invariant. These allow one, for example, to exactly compute the infimum of the L2-norm of Ricci curvature for all complex surfaces of general type. We are also able to show that the standard metric on any complex hyperbolic 4manif...

متن کامل

Four-Manifolds, Curvature Bounds, and Convex Geometry

Seiberg-Witten theory leads to a remarkable family of curvature estimates governing the Riemannian geometry of compact 4-manifolds, and these, for example, imply interesting results concerning the existence and/or uniqueness of Einstein metrics on such spaces. The primary purpose of the present article is to introduce a simplified, user-friendly repackaging of the information conveyed by the Se...

متن کامل

Einstein-maxwell-dirac and Seiberg-witten Monopole Equations

We present unique solutions of the Seiberg-Witten Monopole Equations in which the U(1) curvature is covariantly constant, the monopole Weyl spinor consists of a single constant component, and the 4-manifold is a product of two Riemann surfaces of genuses p1 and p2. There are p1 − 1 magnetic vortices on one surface and p2−1 electric ones on the other, with p1 + p2 ≥ 2 (p1 = p2 = 1 being excluded...

متن کامل

CURVATURE AND SMOOTH TOPOLOGY IN DIMENSION FOUR by

— Seiberg-Witten theory leads to a delicate interplay between Riemannian geometry and smooth topology in dimension four. In particular, the scalar curvature of any metric must satisfy certain non-trivial estimates if the manifold in question has a non-trivial Seiberg-Witten invariant. However, it has recently been discovered [26, 27] that similar statements also apply to other parts of the curv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998